Axial-Flow Compressors: A Strategy for Aerodynamic Design and Analysis

Table Of Contents

 

Preface

 

1.0 Introduction

  • 1.1 Axial-Flow Compressor Basics

  • 1.2 Basic Velocity Diagrams for a Stage

  • 1.3 Similitude and Performance Characteristics

  • 1.4 Stage Matching and Stability

  • 1.5 Dimensionless Parameters

  • 1.6 Units and Conventions

  •  

2.0 Thermodynamics

  • 2.1 First and Second Laws of Thermodynamics

  • 2.2 Efficiency

  • 2.3 Fluid Equation-of-State Fundamentals

  • 2.4 The Caloric Equation of State

  • 2.5 Entropy and the Speed of Sound

  • 2.6 The Thermal Equation of State for Real Gases

  • 2.7 Thermodynamic Properties of Real Gases

  • 2.8 Thermally and Calorically Perfect Gases

  • 2.9 The Pseudo-Perfect Gas Model

  • 2.10 Component Performance Parameters

  • 2.11 Gas Viscosity

  • 2.12 A Computerized Equation of State Package

 

3.0 Fluid Mechanics

  • 3.1 Flow in a Rotating Coordinate System

  • 3.2 Adiabatic Inviscid Compressible Flow

  • 3.3 Adiabatic Inviscid Compressible Flow Applications

  • 3.4 Boundary Layer Analysis

  • 3.5 Two-Dimensional Boundary Layer Analysis

  • 3.6 Axisymmetric Three-Dimensional Boundary Layer Analysis

  • 3.7 Vector Operators in Natural Coordinates

 

4.0 Axial-Flow Compressor Blade Profiles

  • 4.1 Cascade Nomenclature

  • 4.2 NACA 65-Series Profile

  • 4.3 Circular-Arc Camberline

  • 4.4 Parabolic-Arc Camberline

  • 4.5 British C.4 Profile

  • 4.6 Double-Circular-Arc Profile

  • 4.7 NACA A4K6 63-Series Guide Vane Profile

  • 4.8 Controlled Diffusion Airfoils

  • 4.9 Blade Throat Openings

  • 4.10 Staggered Blade Geometry

 

5.0 Two-Dimensional Blade-to-Blade Flow Through Cascades of Blades

  • 5.1 The Blade-to-Blade Flow Problem

  • 5.2 Coordinate System and Velocity Components

  • 5.3 Potential Flow in the Blade-to-Blade Plane

  • 5.4 Linearized Potential Flow Analysis

  • 5.5 The Time-Marching Method

  • 5.6 Blade Surface Boundary Layer Analysis

  • 5.7 Summary

 

6.0 Empirical Performance Models Based On Two-Dimensional Cascade Tests

  • 6.1 Cascade Geometry and Performance Parameters

  • 6.2 Design Angle of Attack or Incidence Angle

  • 6.3 Design Deviation Angle

  • 6.4 Design Loss Coefficient and Diffusion Factors

  • 6.5 Positive and Negative Stall Incidence Angles

  • 6.6 Mach Number Effects

  • 6.7 Shock Wave Loss for Supersonic Cascades

  • 6.8 Off-Design Cascade Performance Correlations

  • 6.9 Blade Tip Clearance Loss

  • 6.10 Shroud Seal Leakage Loss

  • 6.11 Implementation, Extensions and Alternate Methods

 

7.0 Meridional Through-Flow Analysis

  • 7.1 Meridional Coordinate System

  • 7.2 Inviscid, Adiabatic Flow on a Quasi-Normal

  • 7.3 Linking Quasi-Normals

  • 7.4 Repositioning the Stream Surfaces

  • 7.5 Full Normal Equilibrium Solution

  • 7.6 Simplified Forms of the Through-Flow Analysis

  • 7.7 Annulus Sizing

  • 7.8 Numerical Approximations

 

8.0 End-Wall Boundary Layer Analysis

  • 8.1 Historical Development of End-Wall Boundary Layer Theory

  • 8.2 The End-Wall Boundary Layer Equations

  • 8.3 The Boundary Layer Velocity Profile Assumptions

  • 8.4 Empirical Models for Entrainment and Wall Shear Stress

  • 8.5 The Blade Force Defect Thicknesses

  • 8.6 Seal Leakage Effects for Shrouded Blades

  • 8.7 Boundary layer Jump Conditions

  • 8.8 Solution Procedure

  • 8.9 Typical Results

 

9.0 Aerodynamic Performance Analysis

  • 9.1 Geometry Considerations

  • 9.2 Cascade Performance Considerations

  • 9.3 Stall and Compressor Surge Considerations

  • 9.4 Approximate Normal Equilibrium Results

  • 9.5 Full Normal Equilibrium Results

  • 9.6 Concluding Remarks

 

10.0 Compressor Stage Aerodynamic Design

  • 10.1 Dimensionless Performance Parameters

  • 10.2 Application to Stage Design

  • 10.3 Blade Design

  • 10.4 Selecting the Stage Performance Parameters

  • 10.5 Selecting the Swirl Vortex Type

  • 10.6 Free Vortex Flow

  • 10.7 Constant Reaction Vortex Flow

  • 10.8 Constant Swirl and Exponential Vortex Flow

  • 10.9 Assigned Flow Angle Vortex Flows

  • 10.10 Application to a Practical Stage Design

  • 10.11 A Repeating Stage Axial-Flow Compressor

  • 10.12 A Computerized Stage Design System

 

11.0 Multistage Axial-Flow Compressor Aerodynamic Design

  • 11.1 The Basic Compressor Design Approach

  • 11.2 Aerodynamic Performance Specifications

  • 11.3 Blade Design

  • 11.4 Refining the Compressor Design

  • 11.5 An Axial-Flow Compressor Design Example

  • 11.6 The Distribution of Stage Performance Parameters

  • 11.7 The Swirl Vortex Type

  • 11.8 Risks and Benefits

 

12.0 Quasi-Three-Dimensional Blade Passage Flow Field Analysis

  • 12.1 Quasi-Three-Dimensional Flow

  • 12.2 Hub-to-Shroud Flow Governing Equations

  • 12.3 Numerical Integration of the Governing Equations

  • 12.4 Repositioning Stream Surfaces

  • 12.5 The Hub-to-Shroud Flow Analysis

  • 12.6 Coupling the Two Basic Flow Analyses

  • 12.7 Boundary Layer Analysis

 

13.0 Other Components and Variations

  • 13.1 Adjustable Blade Rows

  • 13.2 The Exhaust Diffuser

  • 13.3 The Scroll or Collector

  • 13.4 Reynolds Number and Surface Roughness Effects

  • 13.5 The Axial-Centrifugal Compressor

 

Answers to the Exercises

 

References

 

About the Author

 

Index